skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Wei_Wayne"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Metamaterials with functional responses can exhibit varying properties under different conditions (e.g., wave‐based responses or deformation‐induced property variation). This work addresses rapid inverse design of such metamaterials to meet target qualitative functional behaviors, a challenge due to its intractability and nonunique solutions. Unlike data‐intensive and noninterpretable deep‐learning‐based methods, this work proposes the random‐forest‐based interpretable generative inverse design (RIGID), a single‐shot inverse design method for fast generation of metamaterials with on‐demand functional behaviors. RIGID leverages the interpretability of a random forest‐based “design → response” forward model, eliminating the need for a more complex “response → design” inverse model. Based on the likelihood of target satisfaction derived from the trained random forest, one can sample a desired number of design solutions using Markov chain Monte Carlo methods. RIGID is validated on acoustic and optical metamaterial design problems, each with fewer than 250 training samples. Compared to the genetic algorithm‐based design generation approach, RIGID generates satisfactory solutions that cover a broader range of the design space, allowing for better consideration of additional figures of merit beyond target satisfaction. This work offers a new perspective on solving on‐demand inverse design problems, showcasing the potential for incorporating interpretable machine learning into generative design under small data constraints. 
    more » « less
  2. Abstract Metamaterials are artificial materials designed to exhibit effective material parameters that go beyond those found in nature. Composed of unit cells with rich designability that are assembled into multiscale systems, they hold great promise for realizing next‐generation devices with exceptional, often exotic, functionalities. However, the vast design space and intricate structure–property relationships pose significant challenges in their design. A compelling paradigm that could bring the full potential of metamaterials to fruition is emerging: data‐driven design. This review provides a holistic overview of this rapidly evolving field, emphasizing the general methodology instead of specific domains and deployment contexts. Existing research is organized into data‐driven modules, encompassing data acquisition, machine learning‐based unit cell design, and data‐driven multiscale optimization. The approaches are further categorized within each module based on shared principles, analyze and compare strengths and applicability, explore connections between different modules, and identify open research questions and opportunities. 
    more » « less